Crossings, Colorings, and Cliques

Daniel W. Cranston

DIMACS, Rutgers and Bell Labs
and Virginia Commonwealth University
dcransto@dimacs.rutgers.edu
Joint with Mike Albertson and Jacob Fox.

On Graphs with Crossings, CanaDAM
28 May 2009
Crossing number and Albertson’s Conjecture

Def. Crossing number of a graph G, $\text{cr}(G)$: minimum number of crossings in a (plane) drawing of G.
Def. Crossing number of a graph G, $\text{cr}(G)$: minimum number of crossings in a (plane) drawing of G.

e.g., $\text{cr}(K_5) = 1$, $\text{cr}(K_{3,3}) = 1$, $\text{cr}(G) = 0$ for all planar G.
Def. Crossing number of a graph G, $\text{cr}(G)$: minimum number of crossings in a (plane) drawing of G.

e.g., $\text{cr}(K_5) = 1$, $\text{cr}(K_{3,3}) = 1$, $\text{cr}(G) = 0$ for all planar G.
Crossing number and Albertson’s Conjecture

Def. Crossing number of a graph G, $cr(G)$: minimum number of crossings in a (plane) drawing of G.

e.g., $cr(K_5) = 1$, $cr(K_{3,3}) = 1$, $cr(G) = 0$ for all planar G.

Conj. [Albertson ‘07] If $\chi(G) = r$, then $cr(G) \geq cr(K_r)$.
Def. Crossing number of a graph G, $cr(G)$: minimum number of crossings in a (plane) drawing of G.

e.g., $cr(K_5) = 1$, $cr(K_{3,3}) = 1$, $cr(G) = 0$ for all planar G.

** Conj. ** [Albertson ’07] If $\chi(G) = r$, then $cr(G) \geq cr(K_r)$.

<table>
<thead>
<tr>
<th>r</th>
<th>$cr(K_r)$</th>
<th>Albertson’s Conjecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 4</td>
<td>0</td>
<td>trivial</td>
</tr>
</tbody>
</table>
Crossing number and Albertson’s Conjecture

Def. Crossing number of a graph G, $cr(G)$: minimum number of crossings in a (plane) drawing of G.

e.g., $cr(K_5) = 1$, $cr(K_{3,3}) = 1$, $cr(G) = 0$ for all planar G.

Conj. [Albertson ’07] If $\chi(G) = r$, then $cr(G) \geq cr(K_r)$.

<table>
<thead>
<tr>
<th>r</th>
<th>$cr(K_r)$</th>
<th>Albertson’s Conjecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 4</td>
<td>0</td>
<td>trivial</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>4 Color Theorem</td>
</tr>
</tbody>
</table>
Crossing number and Albertson’s Conjecture

Def. Crossing number of a graph G, $\text{cr}(G)$: minimum number of crossings in a (plane) drawing of G.

e.g., $\text{cr}(K_5) = 1$, $\text{cr}(K_{3,3}) = 1$, $\text{cr}(G) = 0$ for all planar G.

Conj. [Albertson '07] If $\chi(G) = r$, then $\text{cr}(G) \geq \text{cr}(K_r)$.

<table>
<thead>
<tr>
<th>r</th>
<th>$\text{cr}(K_r)$</th>
<th>Albertson’s Conjecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 4</td>
<td>0</td>
<td>trivial</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>4 Color Theorem</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>not hard, done</td>
</tr>
</tbody>
</table>
Crossing number and Albertson’s Conjecture

Def. Crossing number of a graph G, $cr(G)$: minimum number of crossings in a (plane) drawing of G.

E.g., $cr(K_5) = 1$, $cr(K_{3,3}) = 1$, $cr(G) = 0$ for all planar G.

Conj. [Albertson ’07] If $\chi(G) = r$, then $cr(G) \geq cr(K_r)$.

<table>
<thead>
<tr>
<th>r</th>
<th>$cr(K_r)$</th>
<th>Albertson’s Conjecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 4</td>
<td>0</td>
<td>trivial</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>4 Color Theorem</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>not hard, done</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>open</td>
</tr>
</tbody>
</table>
Crossing number and Albertson’s Conjecture

Def. Crossing number of a graph G, $cr(G)$: minimum number of crossings in a (plane) drawing of G.

e.g., $cr(K_5) = 1$, $cr(K_{3,3}) = 1$, $cr(G) = 0$ for all planar G.

Conj. [Albertson ’07] If $\chi(G) = r$, then $cr(G) \geq cr(K_r)$.

<table>
<thead>
<tr>
<th>r</th>
<th>$cr(K_r)$</th>
<th>Albertson’s Conjecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 4</td>
<td>0</td>
<td>trivial</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>4 Color Theorem</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>not hard, done</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>open</td>
</tr>
</tbody>
</table>

Prop. If $\chi(G) = 7$, then $cr(G) \geq 7$.
Critical Graphs and Proof of the Prop.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.
Critical Graphs and Proof of the Prop.

Def. G is a critical graph iff $\forall e \in E(G): \chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.
Critical Graphs and Proof of the Prop.

Def. G is a critical graph iff $\forall e \in E(G): \chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.
Critical Graphs and Proof of the Prop.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \geq r - 1$.

![Graph Diagram]
Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \geq r - 1$.

Prop. If $\chi(G) = 7$, then $\text{cr}(G) \geq 7$.

Pf. Assume G is 7-critical and $K_7 \not\subseteq G$.
Critical Graphs and Proof of the Prop.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \geq r - 1$.

Prop. If $\chi(G) = 7$, then $cr(G) \geq 7$.

Pf. Assume G is 7-critical and $K_7 \not\subseteq G$.
Since $\chi(G) = 7$, $\delta(G) \geq 6$; so $m \geq \frac{6n}{2} = 3n$.
Critical Graphs and Proof of the Prop.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \geq r - 1$.

Prop. If $\chi(G) = 7$, then $cr(G) \geq 7$.

Pf. Assume G is 7-critical and $K_7 \not\subseteq G$. Since $\chi(G) = 7$, $\delta(G) \geq 6$; so $m \geq \frac{6n}{2} = 3n$. Thus $cr(G) \geq m - (3n - 6) \geq 6$.

[Diagram of a pentagon with edges highlighted]
Critical Graphs and Proof of the Prop.

Def. G is a **critical graph** iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \geq r - 1$.

Prop. If $\chi(G) = 7$, then $\text{cr}(G) \geq 7$.

Pf. Assume G is 7-critical and $K_7 \not\subseteq G$.
Since $\chi(G) = 7$, $\delta(G) \geq 6$; so $m \geq \frac{6n}{2} = 3n$.
Thus $\text{cr}(G) \geq m - (3n - 6) \geq 6$.

Thm. (Brooks’ Theorem) If G is connected and not a complete graph or odd cycle, then $\chi(G) \leq \Delta(G)$.
Critical Graphs and Proof of the Prop.

Def. G is a critical graph iff $\forall e \in E(G)$: $\chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \geq r - 1$.

Prop. If $\chi(G) = 7$, then $cr(G) \geq 7$.

Pf. Assume G is 7-critical and $K_7 \not\subseteq G$. Since $\chi(G) = 7$, $\delta(G) \geq 6$; so $m \geq \frac{6n}{2} = 3n$. Thus $cr(G) \geq m - (3n - 6) \geq 6$.

Thm. (Brooks’ Theorem) If G is connected and not a complete graph or odd cycle, then $\chi(G) \leq \Delta(G)$.

Thus, $\Delta(G) \geq 7$.

[Diagram of a critical graph with vertices and edges indicating the structure of the graph.]
Def. G is a critical graph iff $\forall e \in E(G): \chi(G - e) < \chi(G)$.

Obs. Every G contains a critical subgraph H with $\chi(H) = \chi(G)$.

Obs. If G is r-critical, then $\delta(G) \geq r - 1$.

Prop. If $\chi(G) = 7$, then $cr(G) \geq 7$.

Pf. Assume G is 7-critical and $K_7 \not\subseteq G$.
Since $\chi(G) = 7$, $\delta(G) \geq 6$; so $m \geq \frac{6n}{2} = 3n$.
Thus $cr(G) \geq m - (3n - 6) \geq 6$.

Thm. (Brooks’ Theorem) If G is connected and not a complete graph or odd cycle, then $\chi(G) \leq \Delta(G)$.

Thus, $\Delta(G) \geq 7$.
Hence $m \geq 3n + 1$ and $cr(G) \geq m - (3n - 6) \geq 7$. $lacksquare$
χ(G) and generalizations of planarity

4 Color Theorem: Every planar graph is 4-colorable.
χ(G) and generalizations of planarity

4 Color Theorem: Every planar graph is 4-colorable.

Relaxations of Planarity
χ(G) and generalizations of planarity

4 Color Theorem: Every planar graph is 4-colorable.

Relaxations of Planarity

Def. Genus of a graph G, g(G): min number of handles we must add to the plane to embed G, e.g., g(K₇) = 1.
χ(G) and generalizations of planarity

4 Color Theorem: Every planar graph is 4-colorable.

Relaxations of Planarity

Def. Genus of a graph G, \(g(G) \): min number of handles we must add to the plane to embed \(G \), e.g., \(g(K_7) = 1 \).

Def. Thickness of a graph G, \(\tau(G) \): min \(k \) such that \(E(G) \) has a partition into \(k \) planar graphs, e.g., \(\tau(K_6) = 2 \).
χ(G) and generalizations of planarity

4 Color Theorem: Every planar graph is 4-colorable.

Relaxations of Planarity

Def. Genus of a graph G, g(G): min number of handles we must add to the plane to embed G, e.g., g(K_7) = 1.

Def. Thickness of a graph G, τ(G): min k such that E(G) has a partition into k planar graphs, e.g., τ(K_6) = 2.

Def. Crossing number, cr(G); e.g., cr(K_6) = 3.
\(\chi(G) \) and generalizations of planarity

4 Color Theorem: Every planar graph is 4-colorable.

Relaxations of Planarity

Def. Genus of a graph \(G \), \(g(G) \): min number of handles we must add to the plane to embed \(G \), e.g., \(g(K_7) = 1 \).

Def. Thickness of a graph \(G \), \(\tau(G) \): min \(k \) such that \(E(G) \) has a partition into \(k \) planar graphs, e.g., \(\tau(K_6) = 2 \).

Def. Crossing number, \(cr(G) \); e.g., \(cr(K_6) = 3 \).

Bound \(\chi(G) \) in \(g(G) \), \(\tau(G) \), or \(cr(G) \)?
\(\chi(G) \) and generalizations of planarity

4 Color Theorem: Every planar graph is 4-colorable.

Relaxations of Planarity

Def. **Genus** of a graph \(G \), \(g(G) \): min number of handles we must add to the plane to embed \(G \), e.g., \(g(K_7) = 1 \).

Def. **Thickness** of a graph \(G \), \(\tau(G) \): min \(k \) such that \(E(G) \) has a partition into \(k \) planar graphs, e.g., \(\tau(K_6) = 2 \).

Def. **Crossing number**, \(cr(G) \); e.g., \(cr(K_6) = 3 \).

Bound \(\chi(G) \) in \(g(G) \), \(\tau(G) \), or \(cr(G) \)? If so, what are the extremal graphs?
Easier proofs of harder results

Outline of Meta-proof
Easier proofs of harder results

Outline of Meta-proof

0. Consider only critical G.

Easier proofs of harder results

Outline of Meta-proof

0. Consider only critical G.
1. Prove lower bound on m.

Easier proofs of harder results

Outline of Meta-proof
0. Consider only critical G.
1. Prove lower bound on m. (e.g. $m \geq \frac{r-1}{2}n + 1$)
Easier proofs of harder results

Outline of Meta-proof

0. Consider only critical G.
1. Prove lower bound on m. (e.g. $m \geq \frac{r-1}{2} n + 1$)
2. Prove lower bound on $cr(G)$ in m.

Outline of Meta-proof
0. Consider only critical G.
1. Prove lower bound on m. (e.g. $m \geq \frac{r-1}{2} n + 1$)
2. Prove lower bound on $cr(G)$ in m. (e.g. $cr(G) \geq m - (3n - 6)$)
Easier proofs of harder results

Outline of Meta-proof

0. Consider only critical G.
1. Prove lower bound on m. (e.g. $m \geq \frac{r-1}{2} n + 1$)
2. Prove lower bound on $\text{cr}(G)$ in m. (e.g. $\text{cr}(G) \geq m - (3n - 6)$)

Idea. Improvements in 1. or 2. should help us prove more cases of Albertson’s Conjecture.
Easier proofs of harder results

Outline of Meta-proof

0. Consider only critical G.
1. Prove lower bound on m. (e.g. $m \geq \frac{r-1}{2} n + 1$)
2. Prove lower bound on $cr(G)$ in m. (e.g. $cr(G) \geq m - (3n - 6)$)

Idea. Improvements in 1. or 2. should help us prove more cases of Albertson’s Conjecture.

Thm. [Dirac ’52] If G is r-critical and $G \neq K_r$, then

$$m \geq \frac{r - 1}{2} n + \frac{r - 3}{2}.$$
Outline of Meta-proof

0. Consider only critical G.
1. Prove lower bound on m. (e.g. $m \geq \frac{r-1}{2}n + 1$)
2. Prove lower bound on $\text{cr}(G)$ in m. (e.g. $\text{cr}(G) \geq m - (3n - 6)$)

Idea. Improvements in 1. or 2. should help us prove more cases of Albertson’s Conjecture.

Thm. [Dirac ’52] If G is r-critical and $G \neq K_r$, then

$$m \geq \frac{r-1}{2}n + \frac{r-3}{2}.$$

Thm. [Kostochka-Stiebitz ’96] If G is r-critical and $G \neq K_r$ and $n \neq 2r - 1$, then

$$m \geq \frac{r-1}{2}n + r - 3.$$
Proving Albertson’s Conjecture (for lots more cases)

Crossing Lemma [Leighton; Ajtai et. al. ’82] If \(m \geq 4n \), then

\[
\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.
\]
Proving Albertson’s Conjecture (for lots more cases)

Crossing Lemma [Pach et. al. ’06] If \(m \geq \frac{103}{16} n \), then

\[
\text{cr}(G) \geq \frac{1}{31.1} \frac{m^3}{n^2}.
\]
Proving Albertson’s Conjecture (for lots more cases)

Crossing Lemma [Pach et. al. ’06] If \(m \geq (103/16)n \), then

\[
\text{cr}(G) \geq \frac{1}{31.1} \frac{m^3}{n^2}.
\]

Thm. [Pach et. al. ’06]

\[
\begin{align*}
\text{cr}(G) & \geq (7/3)m - (25/3)(n - 2) \\
\text{cr}(G) & \geq 3m - (35/3)(n - 2) \\
\text{cr}(G) & \geq 4m - (103/6)(n - 2)
\end{align*}
\]
Proving Albertson’s Conjecture (for lots more cases)

Crossing Lemma [Pach et. al. ’06] If \(m \geq (103/16)n \), then

\[
\text{cr}(G) \geq \frac{1}{31.1} \frac{m^3}{n^2}.
\]

Thm. [Pach et. al. ’06]

\[
\begin{align*}
\text{cr}(G) & \geq (7/3)m - (25/3)(n - 2) \\
\text{cr}(G) & \geq 3m - (35/3)(n - 2) \\
\text{cr}(G) & \geq 4m - (103/6)(n - 2)
\end{align*}
\]

Prop. Albertson’s Conjecture for \(r = 9 \). (Recall \(\text{cr}(K_9) = 36 \).)
Proving Albertson’s Conjecture (for lots more cases)

Crossing Lemma [Pach et. al. ’06] If \(m \geq (103/16)n \), then
\[
\text{cr}(G) \geq \frac{1}{31.1} \frac{m^3}{n^2}.
\]

Thm. [Pach et. al. ’06]
\[
\begin{align*}
\text{cr}(G) & \geq \left(\frac{7}{3}\right)m - \left(\frac{25}{3}\right)(n - 2) \\
\text{cr}(G) & \geq 3m - \left(\frac{35}{3}\right)(n - 2) \\
\text{cr}(G) & \geq 4m - \left(\frac{103}{6}\right)(n - 2)
\end{align*}
\]

Prop. Albertson’s Conjecture for \(r = 9 \). (Recall \(\text{cr}(K_9) = 36 \).)

Pf. Assume \(G \) is 9-critical and \(G \neq K_9 \). Note \(n \geq 10 \).
Proving Albertson’s Conjecture (for lots more cases)

Crossing Lemma [Pach et. al. ’06] If \(m \geq (103/16)n \), then

\[
\text{cr}(G) \geq \frac{1}{31.1} \frac{m^3}{n^2}.
\]

Thm. [Pach et. al. ’06]

\[
\begin{align*}
\text{cr}(G) & \geq (7/3)m - (25/3)(n - 2) \\
\text{cr}(G) & \geq 3m - (35/3)(n - 2) \\
\text{cr}(G) & \geq 4m - (103/6)(n - 2)
\end{align*}
\]

Prop. Albertson’s Conjecture for \(r = 9 \). (Recall \(\text{cr}(K_9) = 36 \).)

Pf. Assume \(G \) is 9-critical and \(G \neq K_9 \). Note \(n \geq 10 \).

If \(n \neq 17 \), then Kostochka-Stiebitz bound gives \(m \geq 4n + 6 \), so

\[
\text{cr}(G) \geq (7/3)m - (25/3)(n - 2) \geq n + (92/3) > 40.
\]
Proving Albertson’s Conjecture (for lots more cases)

Crossing Lemma [Pach et. al. ’06] If \(m \geq (103/16)n \), then

\[
\text{cr}(G) \geq \frac{1}{31.1} \frac{m^3}{n^2}.
\]

Thm. [Pach et. al. ’06]

\[
\begin{align*}
\text{cr}(G) &\geq (7/3)m - (25/3)(n - 2) \\
\text{cr}(G) &\geq 3m - (35/3)(n - 2) \\
\text{cr}(G) &\geq 4m - (103/6)(n - 2)
\end{align*}
\]

Prop. Albertson’s Conjecture for \(r = 9 \). (Recall \(\text{cr}(K_9) = 36 \).)

Pf. Assume \(G \) is 9-critical and \(G \neq K_9 \). Note \(n \geq 10 \).

If \(n \neq 17 \), then Kostochka-Stiebitz bound gives \(m \geq 4n + 6 \), so \(\text{cr}(G) \geq (7/3)m - (25/3)(n - 2) \geq n + (92/3) > 40 \).

If \(n = 17 \), then Dirac’s bound gives \(m \geq 4n + 3 \), so \(\text{cr}(G) \geq (7/3)m - (25/3)(n - 2) \geq 122/3 > 40 \).
Proving Albertson’s Conjecture (for lots more cases)

Crossing Lemma [Pach et. al. ’06] If \(m \geq \frac{103}{16}n \), then
\[
\text{cr}(G) \geq \frac{1}{31.1} \frac{m^3}{n^2}.
\]

Thm. [Pach et. al. ’06]
\[
\begin{align*}
\text{cr}(G) &\geq \frac{7}{3}m - \frac{25}{3}(n - 2) \\
\text{cr}(G) &\geq 3m - \frac{35}{3}(n - 2) \\
\text{cr}(G) &\geq 4m - \frac{103}{6}(n - 2)
\end{align*}
\]

Prop. Albertson’s Conjecture for \(r = 9 \). (Recall \(\text{cr}(K_9) = 36 \).)

Pf. Assume \(G \) is 9-critical and \(G \neq K_9 \). Note \(n \geq 10 \).
If \(n \neq 17 \), then Kostochka-Stiebitz bound gives \(m \geq 4n + 6 \), so
\[
\text{cr}(G) \geq \frac{7}{3}m - \frac{25}{3}(n - 2) \geq n + \frac{92}{3} > 40.
\]
If \(n = 17 \), then Dirac’s bound gives \(m \geq 4n + 3 \), so
\[
\text{cr}(G) \geq \frac{7}{3}m - \frac{25}{3}(n - 2) \geq \frac{122}{3} > 40.
\]

Thm. Albertson’s Conjecture is true for \(r \leq 12 \).