On Minimum and Maximum Values of γ-labelings of Graphs

Grady Bullington, Linda Eroh, Steven J. Winters
University of Wisconsin Oshkosh

CANAdian Discrete and Algorithmic Mathematics Conference, May 25-28, 2009
1 Definitions

2 Examples

3 Complete Bipartite

4 Spectra of $K_{n,n}$

5 Products of Cycles
OUTLINE

1 DEFINITIONS

2 EXAMPLES

3 COMPLETE BIPARTITE

4 SPECTRA OF $K_{n,n}$

5 PRODUCTS OF CYCLES

ON MINIMUM AND MAXIMUM VALUES OF γ-LABELINGS OF GRAPHS

G. BULLINGTON, L. EROH*, S. J. WINTERS

DEFINITIONS
EXAMPLES
COMPLETE BIPARTITE
SPECTRA OF $K_{n,n}$
PRODUCTS OF CYCLES
1 Definitions

2 Examples

3 Complete Bipartite

4 Spectra of $K_{n,n}$

5 Products of Cycles
OUTLINE

ON MINIMUM AND MAXIMUM VALUES OF \(\gamma \)-LABELINGS OF GRAPHS

G. BULLINGTON, L. EROH*, S. J. WINTERS

DEFINITIONS

EXAMPLES

COMPLETE BIPARTITE

SPECTRA OF \(K_{n,n} \)

PRODUCTS OF CYCLES
On Minimum and Maximum Values of \(\gamma\)-Labelings of Graphs

G. Bullington, L. Eroh*, S. J. Winters

1. Definitions
2. Examples
3. Complete Bipartite
4. Spectra of \(K_{n,n}\)
5. Products of Cycles
A \(\gamma \)-labeling of a graph \(G \) with \(m \) edges is a one-to-one function from \(V(G) \) to \(\{0, 1, \ldots, m\} \).

A \(\gamma \)-labeling exists for a graph if the order is at most one more than the size. Any connected graph has a \(\gamma \)-labeling.

A \(\gamma \)-labeling induces a labeling of the edges. The edge \(uv \) is labeled with \(|\text{label}(u) - \text{label}(v)| \).

A γ-labeling of a graph G with m edges is a one-to-one function from $V(G)$ to $\{0, 1, \ldots, m\}$.

A γ-labeling exists for a graph if the order is at most one more than the size. Any connected graph has a γ-labeling.

A γ-labeling induces a labeling of the edges. The edge uv is labeled with $|\text{label}(u) - \text{label}(v)|$.

A γ-labeling of a graph G with m edges is a one-to-one function from $V(G)$ to $\{0, 1, \ldots, m\}$.

A γ-labeling exists for a graph if the order is at most one more than the size. Any connected graph has a γ-labeling.

A γ-labeling induces a labeling of the edges. The edge uv is labeled with $|\text{label}(u) - \text{label}(v)|$.

A \(\gamma \)-labeling of a graph \(G \) with \(m \) edges is a one-to-one function from \(V(G) \) to \(\{0, 1, \ldots, m\} \).

A \(\gamma \)-labeling exists for a graph if the order is at most one more than the size. Any connected graph has a \(\gamma \)-labeling.

A \(\gamma \)-labeling induces a labeling of the edges. The edge \(uv \) is labeled with \(|\text{label}(u) - \text{label}(v)| \).

The **value** of a γ-labeling is the sum of the induced labels of the edges.

\[
\text{val}_{\text{max}}(G) = \text{maximum value over all } \gamma\text{-labelings of } G \\
\text{val}_{\text{min}}(G) = \text{minimum value over all } \gamma\text{-labelings of } G
\]

The **spectrum** of G is the set of all possible values of γ-labelings of G.
Definitions

The value of a γ-labeling is the sum of the induced labels of the edges.

\[val_{max}(G) = \text{maximum value over all } \gamma\text{-labelings of } G \]
\[val_{min}(G) = \text{minimum value over all } \gamma\text{-labelings of } G \]

The spectrum of G is the set of all possible values of γ-labelings of G.
The value of a γ-labeling is the sum of the induced labels of the edges.

\[val_{\text{max}}(G) = \text{maximum value over all } \gamma \text{-labelings of } G \]
\[val_{\text{min}}(G) = \text{minimum value over all } \gamma \text{-labelings of } G \]

The spectrum of G is the set of all possible values of γ-labelings of G.
I recently learned that this is very similar to the bandwidth of a labeling.

If the vertices of G are labeled with $\{1, 2, \ldots, |V(G)|\}$, the bandwidth is the sum of the induced edge labels.
A γ-labeling will use labels from $\{0, 1, 2, 3, 4, 5\}$.
Example $\text{Val}_{\text{min}}(G)$

A γ-labeling will use labels from $\{0, 1, 2, 3, 4, 5\}$.

\begin{center}
\begin{tikzpicture}
 \node (1) at (1,1) {1};
 \node (2) at (1,-1) {2};
 \node (3) at (-1,-1) {3};
 \node (0) at (-1,1) {0};
 \draw (1) -- (0);
 \draw (0) -- (2);
 \draw (3) -- (2);
 \draw (3) -- (0);
\end{tikzpicture}
\end{center}
Example \(Val_{\min}(G) \)

A \(\gamma \)-labeling will use labels from \(\{0, 1, 2, 3, 4, 5\} \).
A γ-labeling will use labels from $\{0, 1, 2, 3, 4, 5\}$. $val_{min}(G) = 7$.

\[
\begin{array}{ccc}
1 & 1 & 0 \\
2 & 1 & 2 \\
3 & 1 & 2 \\
\end{array}
\]
A γ-labeling will use labels from \{0, 1, 2, 3, 4, 5\}.

\[\text{Example } Val_{max}(G) \]
A γ-labeling will use labels from $\{0, 1, 2, 3, 4, 5\}$.
A γ-labeling will use labels from $\{0, 1, 2, 3, 4, 5\}$.

\[\text{Example } Val_{\text{max}}(G) \]
A γ-labeling will use labels from \{0, 1, 2, 3, 4, 5\}.
$\text{val}_{\text{max}}(G) = 17$.

![Diagram showing a γ-labeling example with labels 0, 4, 4, 5, 1, 3, 4, 1.]
\[\text{val}_{\text{min}}(K_{n_1,n_2}) \]

For \(n_1 \geq n_2 \),
\[\text{val}_{\text{min}}(K_{n_1,n_2}) = \frac{n_2(2n_2^2+1)}{3} + (n_1 - n_2)n_2^2 + \left\lceil \frac{(n_1-n_2)^2}{4} \right\rceil n_2 \]
ON MINIMUM AND MAXIMUM VALUES OF γ-LABELINGS OF GRAPHS

G. Bullington, L. Eroh*, S. J. Winters

DEFINITIONS
EXAMPLES
COMPLETE BIPARTITE
SPECTRA OF $K_{n,n}$
PRODUCTS OF CYCLES

$\text{val}_{min}(K_{n_1,n_2})$

For $n_1 \geq n_2$,

$$\text{val}_{min}(K_{n_1,n_2}) = \frac{n_2(2n_2^2+1)}{3} + (n_1 - n_2)n_2^2 + \left\lfloor \frac{(n_1-n_2)^2}{4} \right\rfloor n_2$$
\(\text{val}_{\text{min}}(K_{n_1,n_2,\ldots,n_r}) \)

A similar labeling produces the minimum value for a complete multipartite graph. (Some edges left out for clarity)
A similar labeling produces the minimum value for a complete multipartite graph.

Sketch of proof: WLOG, labels are consecutive and start at 0. Given any labeling with these labels, it can be converted into this labeling by a series of swaps which does not increase the value.
A similar labeling produces the minimum value for a complete multipartite graph.

Sketch of proof: WLOG, labels are consecutive and start at 0. Given any labeling with these labels, it can be converted into this labeling by a series of swaps which does not increase the value.
ON MINIMUM AND MAXIMUM VALUES OF γ-LABELINGS OF GRAPHS

G. Bullington, L. Eroh*, S. J. Winters

DEFINITIONS
EXAMPLES
COMPLETE BIPARTITE
SPECTRA OF $K_{n,n}$
PRODUCTS OF CYCLES

$\text{val}_{\text{max}}(K_{n_1,n_2}) = n_1 n_2 (n_1 n_2 - \frac{1}{2} n_1 - \frac{1}{2} n_2 + 1)$
For every even positive integer n, every number in the spectrum of $K_{n,n}$ is even.

Sketch of proof: First, we show that any γ-labeling of $K_{n,n}$ can be converted into any other γ-labeling by a series of moves, where each move is one of the following:

- add or subtract 1 from a single label
- swap two consecutive labels used in opposite partite sets

Then we show that each of these moves changes the value by an even number.
For every even positive integer n, every number in the spectrum of $K_{n,n}$ is even.

Sketch of proof: First, we show that any γ-labeling of $K_{n,n}$ can be converted into any other γ-labeling by a series of moves, where each move is one of the following:

- add or subtract 1 from a single label
- swap two consecutive labels used in opposite partite sets

Then we show that each of these moves changes the value by an even number.
For every even positive integer n, every even integer from $\frac{n(2n^2+1)}{3}$ to $\frac{n^2(2n^2-n+2)}{4}$ is in the spectrum of $K_{n,n}$.

From previous results, $\text{val}_{\text{min}}(K_{n,n}) = \frac{n(2n^2+1)}{3}$ and $\text{val}_{\text{max}}(K_{n,n}) = n^2(n^2 - n + 1)$.
For any odd integer $n \geq 3$, every integer from $\frac{n(n+1)(3n-1)}{4}$ to $\frac{n(2n^3+n^2-2n+3)}{4}$ is in the spectrum of $K_{n,n}$.

From previous results, $\text{val}_{\min}(K_{n,n}) = \frac{n(2n^2+1)}{3}$ and $\text{val}_{\max}(K_{n,n}) = n^2(n^2 - n + 1)$.
For any integer $n \geq 2$, the value $\frac{n(2n^2+1)}{3} + 1$ is not in the spectrum of $K_{n,n}$. Furthermore, the values $n^2(n^2 - n + 1) - i$, for $1 \leq i \leq n - 1$, are not in the spectrum of $K_{n,n}$.
If a and b are even integers, $a \geq 4$ and $b \geq 4$, then
\[\text{val}_{\text{max}}(C_a \times C_b) = ab(3ab + 2). \]
\(\text{Val}_{\text{max}}(C_a \times C_b) \)

If \(a \geq 3 \) is odd and \(b \geq 4 \) is even, then

\[
\text{val}_{\text{max}}(C_a \times C_b) = 3a^2b^2 - ab^2 + 2ab - \frac{1}{2}b^2 - b.
\]
If $a \geq 3$ and $b \geq 3$ are odd integers, then

$$\text{val}_{\text{max}}(C_a \times C_b) = 3a^2b^2 - ab^2 - a^2b + 2ab - a - b - \frac{1}{2}(a^2 + b^2).$$
If \(a \geq b \geq 3 \) are integers, then
\[
\text{val}_{\text{min}}(C_a \times C_b) = 2a(b - 1) + 2b^2(a - 1).
\]
A SAMPLING OF OTHER RESULTS ON \(\gamma\)-LABELING

G. Chartrand, D. Erwin, D.W. VanderJagt, and P. Zhang found the spectrum of stars \(K_{1,n}\) and the maximum and minimum value of paths, cycles, and complete graphs.

C.M. de Fonseca, Varaporn Saenpholphat and Ping Zhang determined the spectra of paths, cycles, and complete graphs.
G. Chartrand, D. Erwin, D.W. VanderJagt, and P. Zhang found the spectrum of stars $K_{1,n}$ and the maximum and minimum value of paths, cycles, and complete graphs.

C.M. de Fonseca, Varaporn Saenpholphat and Ping Zhang determined the spectra of paths, cycles, and complete graphs.
A sampling of other results on $\gamma-$labeling

Futaba Okamoto, Ping Zhang, and Varaporn Saenpholphat defined balanced $\gamma-$labeling of digraphs and characterized which digraphs have balanced $\gamma-$labelings.

Grady Bullington showed that the Connell sum sequence is a sharp upper bound on the maximum value of a $\gamma-$labeling of a graph of given order.

S.M. Hedge and P. Shankaran defined and studied analogous results for edge sum labeling.
A sampling of other results on \(\gamma \)-labeling

Futaba Okamoto, Ping Zhang, and Varaporn Saenpholphat defined balanced \(\gamma \)-labeling of digraphs and characterized which digraphs have balanced \(\gamma \)-labelings.

Grady Bullington showed that the Connell sum sequence is a sharp upper bound on the maximum value of a \(\gamma \)-labeling of a graph of given order.

S.M. Hedge and P. Shankaran defined and studied analogous results for edge sum labeling.
A SAMPLING OF OTHER RESULTS ON \(\gamma \)-LABELING

Futaba Okamoto, Ping Zhang, and Varaporn Saenpholphat defined balanced \(\gamma \)-labeling of digraphs and characterized which digraphs have balanced \(\gamma \)-labelings.

Grady Bullington showed that the Connell sum sequence is a sharp upper bound on the maximum value of a \(\gamma \)-labeling of a graph of given order.

S.M. Hedge and P. Shankaran defined and studied analogous results for edge sum labeling.