minors in large t-connected graphs

Serguei Norine
Princeton University

Based on joint work with
Robin Thomas
Georgia Institute of Technology

CANADAM: Graph theory minisymposium

Montreal, May 25th, '09
Complete minors

A graph H is a minor of graph G if H can be obtained from G by repeated contraction of edges and deletion of edges and vertices.

A graph G contains a complete graph K_t on t vertices as a minor if and only if there exist vertex disjoint connected subgraphs $H_1, H_2, ..., H_t$ of G such that for $i \neq j$ there exists an edge from $V(H_i)$ to $V(H_j)$ in G.

Theorem (Kuratowski, Wagner): A graph G is non-planar if and only if G contains K_5 or $K_{3,3}$ as a minor.
Excluding complete minors

A graph G has no K_3 minor if and only if G is a forest.

A graph G has no K_4 minor if and only if G is series-parallel.

Wagner’s theorem (1937): A graph G has no K_5 minor if and only if it can be obtained from planar graphs and V_8 by “gluing” them along cliques of size at most 3.
Excluding complete minors

A graph G has no K_3 minor if and only if G is a forest.

A graph G has no K_4 minor if and only if G is series-parallel.

Wagner’s theorem (1937): A graph G has no K_5 minor if and only if it can be obtained from planar graphs and V_8 by “gluing” them along cliques of size at most 3.

A graph G has no K_6 minor if and only if ???
Classes of graphs with no K_6 minor

- Apex graphs (G is apex if $G - v$ is planar for some $v \in V(G)$)
- Double cross graphs
- Hose graphs
- etc.
If G has no K_t minor then the graph obtained from G by adding a single vertex and joining it to vertices of G arbitrarily has no K_{t+1} minor.

In particular, if G contains a set of vertices X such that $|X| \leq t-5$ and $G - X$ is planar then G has no K_t minor.
Hadwiger’s conjecture

Hadwiger’s conjecture: Every loopless graph with no K_t minor is $(t-1)$-colorable.

Easy for $t \leq 4$.

By Wagner’s theorem Hadwiger’s conjecture for $t=5$ is equivalent to the Four Color Theorem.

Theorem (Robertson, Seymour, Thomas, 1993): Hadwiger’s conjecture holds for $t=6$.

Theorem (Mader, 1968): Minimal counterexample to Hadwiger’s conjecture, if it exists, is 6-connected.

Conjecture (Jorgensen, 1994): Every 6-connected graph with no K_6 minor is apex.
Conjecture (Jorgensen, 1994): Every 6-connected graph with no K_6 minor is apex.

Theorem (M. DeVos, R. Hegde, K. Kawarabayashi, S. N., R. Thomas, P. Wollan): There exists an integer $N>0$ such that every 6-connected graph on at least n vertices with no K_6 minor is apex.
Main result

Theorem (S.N., Robin Thomas):

There exists an integer N such that every t-connected graph G with $|V(G)| \geq N$ and no K_t minor contains a set X of exactly $(t-5)$ vertices such that $G - X$ is planar.
Main result

Theorem (S.N., Robin Thomas):

There exists an integer N such that every t-connected graph G with $|V(G)| \geq N$ and no K_t minor contains a set X of exactly $(t-5)$ vertices such that $G - X$ is planar.

Why large?

Theorem (Kostochka, Thomason, 2001): There exist graphs with connectivity $\Theta(t\sqrt{\log t})$ and no K_t minor.

In the proof we are using Graph Structure of Robertson and Seymour:

Every graph with no K_6 minor either is tree like or can be almost embedded in a surface.

And Erdos-Posa like argument:

"What happens once might as well not happened at all."

We want to be able to eliminate parts of the graph that have qualities not replicated elsewhere without losing much of the structure.
A graph G is said to be k-linked if it has at least $2k$ vertices and for any ordered k-tuples $(s_1, s_2, ..., s_k)$ and $(t_1, t_2, ..., t_k)$ of $2k$ distinct vertices in G, there exist pairwise vertex disjoint paths $P_1, P_2, ..., P_k$ such that for $i=1,2,...,k$ P_i has ends s_i and t_i.

Conjecture (Thomassen): *(which we convinced ourselves is true)*

Every sufficiently large $(2k+2)$-connected graph is k-linked.
Theorem (S.N., Robin Thomas): There exists a integer N such that every t-connected graph G with $|V(G)| \geq N$ and no K_t minor contains a set X of exactly $(t-5)$ vertices such that $G - X$ is planar.

The structure of large $(t-1)$-connected graphs with no K_t minor can be complicated.

There exist graphs with connectivity $\Theta(t\sqrt{\log t})$ and no K_t minor.

The method has other applications.