Computing Fault Tolerance of Cayley Graphs

Beth Novick
Department of Mathematical Sciences
Clemson University

Joint Work with Shuhong Gao

CanaDAM, May 25, 2009
Outline

• Cayley Graphs and Computational Problems
• Fragments and Atoms
• Exchange Graphs
• Network Flow and Algorithm
To define a Cayley graph we need a group G and a subset $S \subseteq G$.

G: any group

S: any subset of G not containing the identity.

Cayley graph (G, S): elements of G are vertices and, for $x, y \in G$, there is a directed edge from x to y iff $x \cdot s = y$ for some $s \in S$.

Examples: cycles (directed and undirected), Hypercubes, truncated hypercubes, etc.
Examples of Cayley graphs \((G, S)\).

Consider \((\mathbb{Z}_5^*, S)\) with \(S = \{2, 3\}\).

Consider \((\mathbb{Z}_2 \times \mathbb{Z}_4)\) with \(S = \{(1, 0), (0, 1), (0, 3), (1, 3), (1, 1)\}\).
Examples

Figure 1: $G = \mathbb{Z}_{27}$, $A = \{1, 4, 17\}$ and $S = A \cup A^{-1}$. (D.F.Hsu)

Figure 2: $G = \mathbb{Z}_{57}$, $A = \{1, 13, 33\}$ and $S = A \cup A^{-1}$. (D.F.Hsu)
Properties of Cayley graphs make them good candidates for communication networks.

- Regular: each vertex has out-degree and in-degree $|S|$.

- Vertex transitive, provided it is strongly connected, that is, every element of G can be written as a product of elements from S.

- They have small degree and small diameters.

- They are useful for constructing good expander graphs.
Fault tolerance and vertex connectivity are essentially the same.

The fault tolerance of a digraph \mathcal{X} is the largest number k such that failure of k nodes does not destroy the connectivity of the whole network.

If $\kappa(\mathcal{X})$ is the cardinality of the smallest vertex cut then the fault tolerance of $\mathcal{X} = \kappa(\mathcal{X}) - 1$.

(G, S) has optimal fault tolerance when the smallest vertex cut has cardinality $|S|$.
Computational Problems

Problem 1. Given a finite group G and a subset S of G, decide if the Cayley graph (G, S) is strongly connected.

Problem 2. Given a finite group G and a subset S of G, compute the fault tolerance of (G, S), assuming the graph is strongly connected.

“Given a finite group G”: We assume that the group G is given by an oracle (or a black box). The oracle can perform various group operations, namely, product of two elements, the inverse of an element, and distinctness of two elements.
Question: Are there polynomial time algorithms for the above problems?

We need to be careful about what we consider polynomial time.

Polynomial time: the number of group operations used is bounded by a polynomial in $|S|$ and $\log |G|$.

Warning: One can not examine all the vertices in the graph!
Answers

Problem 1: **still open**

It is open even for the special case: G is the multiplicative group of a finite field \mathbb{F}_q and $S = \alpha$. In this case, the graph (G, S) is strongly connected iff α a primitive element (i.e. α has multiplicative order $q - 1$):

Consider $G = \mathbb{F}_{2^n}^*, n = 10,000$. $\mathbb{F}_{2^n} = \mathbb{F}_2[x]/f(x)$ where $f(x)$ is irreducible of degree n.

α is presented in the basis $(1, x, \ldots, x^{n-1}) \mod f(x)$.

$(G, \{\alpha, \alpha^{-1}\})$ is connected iff has order $2^n - 1$.

Problem 2: **yes**
To see how to answer problem 2 we need to ‘fragments’ and ‘atoms’.

Watkins (1970): For any digraph \mathcal{X} and any vertex cut $C \subseteq V(\mathcal{X})$, the strongly connected components of $\mathcal{X} \setminus C$ are called the fragments of \mathcal{X} induced by C.

A fragment is called an atom if it is induced by a minimum vertex cut and it has minimum cardinality among all such fragments.
The are two ways a vertex set can be a fragment.

For any subset A of $V(\mathcal{X})$, we denote

$$N^+(A) = \{v \in V(\mathcal{X}) \setminus A : [u, v] \in E(\mathcal{X}) \text{ for some } u \in A\},$$
$$N^-(A) = \{v \in V(\mathcal{X}) \setminus A : [v, u] \in E(\mathcal{X}) \text{ for some } u \in A\},$$

called the positive or negative neighborhood of A, respectively.

If A is an atom, then $N^+(A)$ or $N^-(A)$ is a vertex cut (of minimum cardinality), called positive or negative atom, respectively.
Three Structural Theorems

Theorem 1 (W. Watkins 1970 and Y.O. Hamidoune 1977): Let X be any strongly connected vertex transitive digraph with a positive atom. Then its positive atoms form a partition of all the vertices.

Theorem 2 (Y.O. Hamidoune 1984): Assume that the Cayley graph (G, S) is strongly connected and contains positive atoms. Let A be the positive atom of (G, S) containing 1. Then $A = \langle S \cap A \rangle$ and every positive atom is of the form aA, $a \in G$, i.e. a left coset of A.

Theorem 3 (Gao and N. 2007): $A \subseteq S \cdot S^{-1} = \{a \cdot b^{-1} : a, b \in S\}$.
Consequences of our structural theorem

• A very simple proof that ‘exchange graphs’ are optimally fault tolerant.

• An efficient algorithm for computing fault tolerance in connected Cayley graphs. (Polynomial in an appropriate sense.)
C. Godsil (1981):

S_n: the symmetric group of permutations on $\{1, 2, \ldots, n\}$.

Γ: any graph (undirected) on the vertex set $\{1, 2, \ldots, n\}$.

Each edge (i, j) of Γ corresponds to a transposition in S_n that exchanges i and j.

Fact. (S_n, Γ) is connected iff Γ is connected.
Exchange Graphs have Optimal Fault Tolerance

Theorem 4 (Gao, N.). The connectivity of \((S_n, \Gamma)\) is equal to \(|E(\Gamma)|\), the number of edges in \(\Gamma\).

Proof. Suppose \(\kappa(S_n, \Gamma) < |E(\Gamma)|\). Then the atom \(A\) containing 1 has size at least 2 and is a subset of

\[
\Gamma \cdot \Gamma^{-1} = \{(i, j)(a, b) : (i, j), (a, b) \in E(\Gamma)\}.
\]

Furthermore, \(A\) is generated by \(A \cap \Gamma\) and, as \(|A| \geq 2\), in particular \(A \cap \Gamma \neq \emptyset\). Thus there is a 2-cycle of \(\Gamma\) that lies in \(\Gamma \cdot \Gamma^{-1}\), impossible.
Network Flow and Algorithm

We assume the the Cayley graph is connected, or equivalently work with the connected component containing 1.

Let G be any finite group and $S \subset G$ not containing 1.

Let G_0 be the subgroup generated by S. Then the Cayley graph (G_0, S) is the connected component of \mathcal{X} that contains the identity 1. We denote this component by \mathcal{X}_0, i.e., $\mathcal{X}_0 = (G_0, S)$.
We create the smaller graph, \bar{X}_0.

Lemma. Suppose $G_0 \neq A_1 \cup A_2$. Then $\kappa(X_0)$ is equal to the maximum flow from 1 to v_∞ in \bar{X}_0 (with each edge of capacity 1).

Proof. We show $\kappa(X_0) = \kappa(\bar{X}_0)$:

Create the smaller graph, \bar{X}_0.

$A \subseteq SS^{-1}$ (Using structural theorem.)

$N^+(A) \subseteq A_1 \cup A_2$

Find maximum flow in \bar{X}_0.
Algorithm:

Input: a black box (oracle) for a group G and $S \subset G$

Output: Fault tolerance of the connected components of the Cayley graph (G, S)

Step 1: Compute the vertices in A_1 and A_2

Step 2: If $G = A_1 \cup A_2$ then compute the connectivity of (G, S), say k.

Step 3: Otherwise construct the network $\overline{\mathcal{X}}_0$.

Network Flow and Algorithm
Step 4: Find the maximum flow from 1 to \(v_\infty \), say \(k \).

Return \(k - 1 \).

Note that the network \(\overline{X}_0 \) has at most \(|S|^3 + 1 \) vertices. So the algorithm runs in polynomial time.
Hence we have solved our Problem 2.

Theorem 5 (Gao, N.) If a strongly connected Cayley digraph $X = (G,S)$ is given by the set S together with a black box that efficiently provides inverses, multiplication and recognition of the identity element, then the connectivity $\kappa(X)$ may be determined in time polynomial in $|S|$ and $\log |G|$.

In other words the number of calls to the oracle is at most $|S|^c$ for some constant c.
Open Problems

Fact. Computing fault tolerance of Cayley graphs is easy!

Open Problem 1: Is there a polynomial time algorithm to decide the connectedness of Cayley graphs?

Open Problem 2: Which Cayley graphs are Hamiltonian?
Open Problems

Open Problem 3: Star diameters and routing on Cayley graphs?
