Embedding and Colouring
Odd Cycle Systems

Daniel Horsley and David Pike
Memorial University of Newfoundland
Definition:

An m-cycle system of order v consists of a decomposition of K_v into edge-disjoint cycles, each having length m.
Definition:

An m-cycle system of order v consists of a decomposition of K_v into edge-disjoint cycles, each having length m.

Example: A 5-cycle system of order 11:
Definition:

An m-cycle system of order v consists of a decomposition of K_v into edge-disjoint cycles, each having length m.

Example: A 5-cycle system of order 11:
Definition:

An m-cycle system of order v consists of a decomposition of K_v into edge-disjoint cycles, each having length m.

Example: A 5-cycle system of order 11:
Definition:

An m-cycle system of order v consists of a decomposition of K_v into edge-disjoint cycles, each having length m.

Example: A 5-cycle system of order 11:
Definition:

An \(m \)-cycle system of order \(v \) consists of a decomposition of \(K_v \) into edge-disjoint cycles, each having length \(m \).

Example: A 5-cycle system of order 11:
Theorem (Alspach and Gavlas, 2001; Šajna, 2002):

An m-cycle system of order v exists if and only if v is odd, $v \geq m$, and m divides $\binom{v}{2}$.
Theorem (Alspach and Gavlas, 2001; Šajna, 2002):

An m-cycle system of order v exists if and only if v is odd, $v \geq m$, and m divides $\binom{v}{2}$.

<table>
<thead>
<tr>
<th>Cycle Length m</th>
<th>Admissible Orders v</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1 or 3 (mod 6)</td>
</tr>
<tr>
<td>5</td>
<td>1 or 5 (mod 10)</td>
</tr>
<tr>
<td>7</td>
<td>1 or 7 (mod 14)</td>
</tr>
<tr>
<td>9</td>
<td>1 or 9 (mod 18)</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
Theorem (Alspach and Gavlas, 2001; Šajna, 2002):

An m-cycle system of order v exists if and only if v is odd, $v \geq m$, and m divides $\binom{v}{2}$.

<table>
<thead>
<tr>
<th>Cycle Length m</th>
<th>Admissible Orders v</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1 or 3 (mod 6)</td>
</tr>
<tr>
<td>5</td>
<td>1 or 5 (mod 10)</td>
</tr>
<tr>
<td>7</td>
<td>1 or 7 (mod 14)</td>
</tr>
<tr>
<td>9</td>
<td>1 or 9 (mod 18)</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>m</td>
<td>1 or m (mod $2m$)</td>
</tr>
</tbody>
</table>
Theorem (Alspach and Gavlas, 2001; Šajna, 2002):

An m-cycle system of order v exists if and only if v is odd, $v \geq m$, and m divides $\binom{v}{2}$.

<table>
<thead>
<tr>
<th>Cycle Length m</th>
<th>Admissible Orders v</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1 or 3 (mod 6)</td>
</tr>
<tr>
<td>5</td>
<td>1 or 5 (mod 10)</td>
</tr>
<tr>
<td>7</td>
<td>1 or 7 (mod 14)</td>
</tr>
<tr>
<td>9</td>
<td>1 or 9 (mod 18)</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>15</td>
<td>1, 15, 21 or 25 (mod 30)</td>
</tr>
</tbody>
</table>
Definition:

A weak k-colouring of a cycle system S consists of a partition of the vertices of S into k colour classes such that no cycle of S is monochromatic.

A cycle system S is said to be k-chromatic if k is the smallest integer for which S admits a k-colouring.
Definition:

A weak k-colouring of a cycle system S consists of a partition of the vertices of S into k colour classes such that no cycle of S is monochromatic.

A cycle system S is said to be k-chromatic if k is the smallest integer for which S admits a k-colouring.

Example:
Definition:

A **weak** k-colouring of a cycle system S consists of a partition of the vertices of S into k colour classes such that no cycle of S is monochromatic.

A cycle system S is said to be **k-chromatic** if k is the smallest integer for which S admits a k-colouring.

Example:

This system is 2-chromatic.
Some History – Triple Systems

- Every $\text{STS}(v)$ with $v \geq 7$ requires at least 3 colours. (Rosa and Pelikán, 1970)
- Every $\text{STS}(v)$ with $7 \leq v \leq 15$ is 3-chromatic. (Mathon, Phelps and Rosa, 1983)
- Every $\text{STS}(19)$ is 3-chromatic. (Forbes et al., 2009)
Some History – Triple Systems

- Every STS\((v)\) with \(v \geq 7\) requires at least 3 colours.
 (Rosa and Pelikán, 1970)

- Every STS\((v)\) with \(7 \leq v \leq 15\) is 3-chromatic.
 (Mathon, Phelps and Rosa, 1983)

- Every STS\((19)\) is 3-chromatic.
 (Forbes et al., 2009)

- For each \(k\) there is a STS with chromatic number at least \(k\).
 (Rosa, 1970)

- For each \(k \geq 3\) there is a \(k\)-chromatic STS.
 (de Brandes, Phelps and Rödl, 1982)
Some History – Triple Systems

• Every $\text{STS}(v)$ with $v \geq 7$ requires at least 3 colours.
 (Rosa and Pelikán, 1970)

• Every $\text{STS}(v)$ with $7 \leq v \leq 15$ is 3-chromatic.
 (Mathon, Phelps and Rosa, 1983)

• Every $\text{STS}(19)$ is 3-chromatic.
 (Forbes et al., 2009)

• For each k there is a STS with chromatic number at least k.
 (Rosa, 1970)

• For each $k \geq 3$ there is a k-chromatic STS.
 (de Brandes, Phelps and Rödl, 1982)

• There is a 4-chromatic STS(21).
 (Haddad, 1999)

• There is a 5-chromatic STS(63).
 (Fugère, Haddad and Wehlau, 1994)

• There is a 6-chromatic STS(243).
 (Bruen, Haddad and Wehlau, 1998)
Theorem (Milici and Tuza, 1996):

For each $m \geq 3$, there exists a non-2-colourable m-cycle system.
Theorem (Milici and Tuza, 1996):
For each $m \geq 3$, there exists a non-2-colourable m-cycle system.

Theorem (Burgess and Pike, 2008):
For each $k \geq 2$ and each even $m \geq 4$, there exists a k-chromatic m-cycle system.
Theorem (Milici and Tuza, 1996):

For each \(m \geq 3 \), there exists a non-2-colourable \(m \)-cycle system.

Theorem (Burgess and Pike, 2008):

For each \(k \geq 2 \) and each even \(m \geq 4 \),
there exists a \(k \)-chromatic \(m \)-cycle system.

Theorem (Sotteau, 1981):

\(K_{a,b} \) can be decomposed into cycles of length \(2t \) if and only if
\(a \equiv b \equiv 0 \pmod{2} \), \(a \geq t \), \(b \geq t \), and \(2t \) divides \(ab \).
Theorem (Milici and Tuza, 1996):
For each $m \geq 3$, there exists a non-2-colourable m-cycle system.

Theorem (Burgess and Pike, 2008):
For each $k \geq 2$ and each even $m \geq 4$, there exists a k-chromatic m-cycle system.

Theorem (Sotteau, 1981):
$K_{a,b}$ can be decomposed into cycles of length $2t$ if and only if $a \equiv b \equiv 0 \pmod{2}$, $a \geq t$, $b \geq t$, and $2t$ divides ab.

Theorem (Horsley and Pike):
For each $k \geq 2$ and each odd $m \geq 5$, there exists a k-chromatic m-cycle system.
Definition:

A partial m-cycle system of order u consists of a set of edge-disjoint m-cycles on u vertices.

Example:

PTS(8)
Definition:

A partial \(m \)-cycle system of order \(u \) consists of a set of edge-disjoint \(m \)-cycles on \(u \) vertices.

Example:

\[\text{PTS}(8) \]

Definition:

A (possibly partial) \(m \)-cycle system \(\mathcal{P} \) is said to be **embedded** in an \(m \)-cycle system \(\mathcal{S} \) if each cycle of \(\mathcal{P} \) is a cycle of \(\mathcal{S} \).
Definition:

A partial m-cycle system of order u consists of a set of edge-disjoint m-cycles on u vertices.

Example:

Definition:

A (possibly partial) m-cycle system \mathcal{P} is said to be embedded in an m-cycle system \mathcal{S} if each cycle of \mathcal{P} is a cycle of \mathcal{S}.
Definition:

A partial m-cycle system of order u consists of a set of edge-disjoint m-cycles on u vertices.

Example:

Definition:

A (possibly partial) m-cycle system P is said to be embedded in an m-cycle system S if each cycle of P is a cycle of S.
Theorem (Erdős and Hajnal, 1966; Lovász, 1968):

Let $m \geq 2$, k and s be natural numbers. Then there exists a finite m-uniform set-system with chromatic number at least k and with no circuit of length s or less.
Theorem (Erdős and Hajnal, 1966; Lovász, 1968):

Let $m \geq 2$, k and s be natural numbers.
Then there exists a finite m-uniform set-system with chromatic number at least k and with no circuit of length s or less.

Corollary ($m \geq 3$ and $s = 2$):

For each $m \geq 3$, there exists a finite partial 2-$(v, m, 1)$ design with weak chromatic number at least k.
Theorem (Erdős and Hajnal, 1966; Lovász, 1968):

Let $m \geq 2$, k and s be natural numbers. Then there exists a finite m-uniform set-system with chromatic number at least k and with no circuit of length s or less.

Corollary ($m \geq 3$ and $s = 2$):

For each $m \geq 3$, there exists a finite partial 2-$(v, m, 1)$ design with weak chromatic number at least k.

Corollary:

For each $m \geq 3$, there exists a finite partial m-cycle system with weak chromatic number k.
Theorem (Erdős and Hajnal, 1966; Lovász, 1968):

Let $m \geq 2, k$ and s be natural numbers. Then there exists a finite m-uniform set-system with chromatic number at least k and with no circuit of length s or less.

Corollary ($m \geq 3$ and $s = 2$):

For each $m \geq 3$, there exists a finite partial $2-(v, m, 1)$ design with weak chromatic number at least k.

Corollary:

For each $m \geq 3$, there exists a finite partial m-cycle system with weak chromatic number k.

We now wish to show that weakly k-chromatic partial m-cycle systems can be embedded into weakly k-chromatic m-cycle systems.
To convey some of the flavour of such embeddings, we focus on $k = 3$ and $m = 5$.

Let \mathcal{P} be a weakly 3-chromatic partial 5-cycle system of some order u, on vertex set \mathbb{Z}_u.

Let $\alpha : \mathbb{Z}_u \to \{c_1, c_2, c_3\}$ be a colouring of \mathbb{Z}_u such that no cycle of \mathcal{P} is monochromatic under α.

Let $v \geq 10u + 7$ be 5-admissible (so $v \equiv 1$ or $5 \pmod{10}$). Let $t, w \in \mathbb{Z}$ such that $v = (2t + 1)(5) + w$ and $2 \leq w \leq 11$. Necessarily w is even and $t \geq u$.

We will embed \mathcal{P} in a 3-chromatic 5-cycle system \mathcal{S} of order v, on vertex set $(\mathbb{Z}_{2t+1} \times \mathbb{Z}_5) \cup W \cup W'$, where $|W| = |W'| = \frac{w}{2}$.
\[V = (\mathbb{Z}_{2t+1} \times \mathbb{Z}_5) \cup W \cup W', \text{ where } |W| = |W'| = \frac{w}{2}. \]

Let \(\beta \) be a colouring of \(V \) such that:

- \(\beta(x) = c_1 \) for all \(x \in W \)
- \(\beta(x) = c_2 \) for all \(x \in W' \)
- \(\beta((x, i)) = \begin{cases}
\alpha(x) & \text{if } x \in \mathbb{Z}_u \text{ and } i \in \{0, 2\} \\
\pi(\alpha(x)) & \text{if } x \in \mathbb{Z}_u \text{ and } i \in \{1, 3\} \\
\pi^2(\alpha(x)) & \text{if } x \in \mathbb{Z}_u \text{ and } i = 4 \\
c_1 & \text{if } x \in \mathbb{Z}_{2t+1} \setminus \mathbb{Z}_u \text{ and } i \in \{0, 2\} \\
c_2 & \text{if } x \in \mathbb{Z}_{2t+1} \setminus \mathbb{Z}_u \text{ and } i \in \{1, 3\} \\
c_3 & \text{if } x \in \mathbb{Z}_{2t+1} \setminus \mathbb{Z}_u \text{ and } i = 4
\end{cases} \]

where \(\pi \) is the permutation \((c_1, c_2, c_3) \).
\(V = (\mathbb{Z}_{2t+1} \times \mathbb{Z}_5) \cup W \cup W', \text{ where } |W| = |W'| = \frac{w}{2}. \)
\[V = (\mathbb{Z}_{2t+1} \times \mathbb{Z}_5) \cup W \cup W', \text{ where } |W| = |W'| = \frac{w}{2}. \]
\[V = (\mathbb{Z}_{2t+1} \times \mathbb{Z}_5) \cup W \cup W', \text{ where } |W| = |W'| = \frac{w}{2}. \]

Step 1 of 4

For each \(C = (x_0, x_1, x_2, x_3, x_4) \) in \(\mathcal{P} \)
there are vertices \(x_1 \) and \(x_3 \) with different colours.
\[V = (\mathbb{Z}_{2t+1} \times \mathbb{Z}_5) \cup W \cup W', \text{ where } |W| = |W'| = \frac{w}{2}. \]

Step 1 of 4

For each \(C = (x_0, x_1, x_2, x_3, x_4) \) in \(P \) there are vertices \(x_1 \) and \(x_3 \) with different colours.

Use a 5-cycle decomposition of \(C \cdot K^c_5 \) such that both:

1. each cycle contains both \((x_1, i)\) and \((x_3, i)\) for some \(i \)
2. the decomposition includes \((x_0, 0), (x_1, 0), (x_2, 0), (x_3, 0), (x_4, 0)\)

NB: \(P \) is embedded within \(\mathbb{Z}_u \times \{0\} \).
$V = (\mathbb{Z}_{2t+1} \times \mathbb{Z}_5) \cup W \cup W'$, where $|W| = |W'| = \frac{w}{2}$.

Let G be K_{2t+1} with the edges of \mathcal{P} removed.
\[V = (\mathbb{Z}_{2t+1} \times \mathbb{Z}_5) \cup W \cup W', \text{ where } |W| = |W'| = \frac{w}{2}. \]

Let \(G \) be \(K_{2t+1} \) with the edges of \(\mathcal{P} \) removed.

Decompose \(G \cdot K_5^c \) into 5-cycles such that, for each cycle \(C \), \((x, i)\) and \((x, i + 1)\) are in \(C \) for some \(x \in \mathbb{Z}_{2t+1} \) and some \(i \in \mathbb{Z}_5 \) (Lindner and Rodger, 1993).

All non-horizontal edges of \(\mathbb{Z}_{2t+1} \times \mathbb{Z}_5 \) are now used.
\[V = (\mathbb{Z}_{2t+1} \times \mathbb{Z}_5) \cup W \cup W', \text{ where } |W| = |W'| = \frac{w}{2}. \]

Let \(G \) be \(K_w^c \lor (K_5 \cup K_5) \), formed on \(W \cup W' \cup (\{2i, 2i+1\} \times \mathbb{Z}_5) \).
$V = (\mathbb{Z}_{2t+1} \times \mathbb{Z}_5) \cup W \cup W'$, where $|W| = |W'| = \frac{w}{2}$.

Let G be $K^c_w \lor (K_5 \cup K_5)$, formed on $W \cup W' \cup (\{2i, 2i + 1\} \times \mathbb{Z}_5)$.

Decompose G into 5-cycles such that, for each cycle C, either

1. $V(C) \cap W \neq \emptyset$ and $V(C) \cap W' \neq \emptyset$

or

2. $V(C) \cap (W \cup W') = \emptyset$
\[V = (\mathbb{Z}_{2t+1} \times \mathbb{Z}_5) \cup W \cup W', \text{ where } |W| = |W'| = \frac{w}{2}. \]

Let \(G \) be \(K^c_w \lor (K_5 \cup K_5) \), formed on \(W \cup W' \cup (\{2i, 2i + 1\} \times \mathbb{Z}_5) \).

Decompose \(G \) into 5-cycles such that, for each cycle \(C \), either

1. \(V(C) \cap W \neq \emptyset \) and \(V(C) \cap W' \neq \emptyset \)

or

2. \(V(C) \cap (W \cup W') = \emptyset \)

Do this for \(i = 0, \ldots, t - 1 \)
\[V = (\mathbb{Z}_{2t+1} \times \mathbb{Z}_5) \cup W \cup W', \text{ where } |W| = |W'| = \frac{w}{2}. \]

Let \(G \) be \(K_{w+5} \) on \\
\(W \cup W' \cup (\{2t\} \times \mathbb{Z}_5) \).
\[V = (\mathbb{Z}_{2t+1} \times \mathbb{Z}_5) \cup W \cup W', \text{ where } |W| = |W'| = \frac{w}{2}. \]

Step 4 of 4

Let \(G \) be \(K_{w+5} \) on
\(W \cup W' \cup (\{2t\} \times \mathbb{Z}_5) \).

Decompose \(G \) into 5-cycles
such that no cycle is monochromatic.

QED
Theorem (Horsley and Pike):

Let k and m be integers such that $k \geq 2$, $m \geq 3$ and $(k, m) \neq (2, 3)$. Then there is an integer $n'_{k,m}$ such that there exists a weakly k-chromatic m-cycle system of order v for all m-admissible integers $v \geq n'_{k,m}$.

Theorem (Horsley and Pike):

Let $u_{k,m}$ be the minimum order of a weakly k-chromatic partial m-cycle system.

Let $n_{k,m}$ be the smallest m-admissible integer such that there exists a weakly k-chromatic m-cycle system of order v for all m-admissible integers $v \geq n_{k,m}$.

Then $u_{k,m} \leq n_{k,m} \leq 2m(u_{k,m} + 1) + 1.$
Questions for Further Study:

- What about other types of designs?
- Perhaps a chromatic version of Wilson’s Theorem?

Acknowledgements: