Weak Near-Unanimity Functions and NP-Completeness Proofs

Cobus Swarts
joint work with Gary MacGillivray

University of Victoria

The 2009 Canadian Discrete and Algorithmic Mathematics Conference
May 28, 2009
The Homomorphism Problem.
- Complexity in the directed case: Unknown, only special cases e.g. semi-complete digraphs (Bang-Jensen, Hell and MacGillivray, 1988), smooth digraphs (Barto, Kozik and Niven 2008).

Weak Near-Unanimity Functions and NP-completeness.
- Conjecture of Bulatov, Jeavons and Krokhin.
- Gather evidence for this conjecture:
 - Some polynomial cases: X, C_k-extended X, graft extension.
 - NP-completeness: Indicator construction, vertex and arc sub-indicators.

WNUFs/no WNUFs for undirected graphs, semi-complete digraphs, and vertex transitive digraphs.
Let G and H be digraphs. A homomorphism from G to H is a mapping $f : V(G) \rightarrow V(H)$ such that $xy \in A(G)$ implies that $f(x)f(y) \in A(H)$. The existence of such a homomorphism is denoted by $G \rightarrow H$.

The homomorphism problem for the digraph H is the problem of deciding for a given input G whether $G \rightarrow H$. This is also known as the H-colouring problem, and is denoted by HOM_H.
In the undirected case there is a dichotomy:

Theorem (Hell and Nešetřil 1990)

Let H be a graph with loops allowed.

- *If H is bipartite or contains a loop, then the H-colouring problem has a polynomial time algorithm.*
- *Otherwise the H-colouring problem is NP-complete.*
Complexity in the Directed Case

Only known in special cases:

Theorem (Bang-Jensen, Hell and MacGillivray 1988)

Let H be a semi-complete digraph.

- If H contains at most one directed cycle, then H-colouring is polynomial time solvable.
- Otherwise H-colouring is NP-complete.

Theorem (Barto, Kozik and Niven 2008)

Let H be a digraph with no sources and no sinks.

- If the core of H is a directed cycle, then HOM_H is polynomial.
- If the core of H is not a directed cycle, then HOM_H is NP-complete.
The result by Barto, Kozik and Niven uses tools from universal algebra:

Theorem (Bulatov, Jeavons and Krokhin; Larose and Zádori; Maróti and McKenzie)

If the digraph H does not admit a weak near unanimity function, then HOM_H is NP-complete.

The existence of such a function is conjectured by Bulatov, Jeavons and Krokhin to determine the complexity of HOM_H exactly:

Conjecture

If the digraph H admits a WNUF, then HOM_H is polynomial, otherwise (if H does not admit a WNUF) HOM_H is NP-complete.
A weak near-unanimity function \(f \) of arity \(k \) (\(\text{WNUF}_k \)) on the digraph \(H \) is

- **a polymorphism:** \(f : H^k \to H \),

\begin{align*}
V(H^k) &= \underbrace{V(H) \times V(H) \times \cdots \times V(H)}_{k} \\
(x_1, x_2, \ldots, x_k) \to (y_1, y_2, \ldots, y_k) \text{ iff } x_i \to y_i, \ 1 \leq i \leq k,
\end{align*}

- **idempotent:** \(f(x, x, \ldots, x) = x \),

- **weakly nearly-unanimous:**

\begin{align*}
f(y, x, x, \ldots, x, x) &= f(x, y, x, \ldots, x, x) = f(x, x, y, \ldots, x, x) = \\
&= \cdots = f(x, x, x, \ldots, x, y).
\end{align*}
Conjecture of Bulatov, Jeavons and Krokhin

Conjecture (Bulatov, Jeavons and Krokhin)

If H admits a WNUF, then HOM_H is polynomial time solvable. Otherwise HOM_H is NP-complete (this part is known).

To gather evidence for this conjecture we could:

- Show that known algorithmic methods \Rightarrow WNUFs.
- Try to show that digraphs H for which HOM_H is NP-complete, have no WNUF. Try to prove “no-WNUF” theorems.
- Prove it for various graph families.
 - Good candidates are ones where a dichotomy is known.
Theorem (Gutjahr, Woeginger and Welzl 1992)

Let H be a digraph such that

- H has an X-enumeration, or
- H has the C_k-extended X property, or
- H is an instance of the graft extension.

Then HOM_H is polynomial time solvable.

The goal here is to show that if a digraph H has any of these properties, then it also has a WNUF.
The X-enumeration

Let $\{h_1, h_2, \ldots, h_n\}$ be an enumeration of the vertices of a digraph H. This enumeration is said to satisfy the X property if $h_i h_j, h_k h_l \in A(H)$, implies that $\min(h_i, h_k) \min(h_j, h_l) \in A(H)$, where the minimum is taken with respect to the enumeration of $V(H)$.

![Diagram](image)
The X-enumeration and WNUFs

Theorem

If H has an X-enumeration, *then* H has a WNUF$_2$.

Proof: Define $f : H^2 \to H$ by $f(x_1, x_2) = \min\{x_1, x_2\}$.

A converse is also true.

Theorem

If there is an enumeration of $V(H)$ and a WNUF$_2$, $f : H^2 \to H$, such that for all $x_1, x_2 \in V(H)$, $f(x_1, x_2) = \min\{x_1, x_2\}$, then this enumeration is an X-enumeration.

Proof: Suppose u_1u_2 and $v_1v_2 \in E(H)$. Then $(u_1, v_1)(u_2, v_2) \in E(H \times H)$, so $f(u_1, v_1) = \min\{u_1, v_1\}$ is adjacent to $f(u_2, v_2) = \min\{u_2, v_2\}$ in H.

Arity 2 can be replaced by arity k.

Cobus Swarts

WNUFs and NP-c
The C_k-extended X Property

\[V_0 \rightarrow V_k - 1 \rightarrow \ldots \rightarrow V_1 \rightarrow V_3 \rightarrow V_2 \]

\[\ldots \]

\[V_0 \rightarrow X \rightarrow V_1 \]
The X-graft Extension

- h_1, h_2, \ldots, h_n is an X-enumeration H_1.
- H_2 is another digraph.

Form H by replacing h_n by H_2 as in the wreath product. The digraph H is called $\text{graft}(H_1, H_2)$.
Theorem

Let H be a digraph such that

- H has an X-enumeration, or
- H has the C_k-extended X property, or
- $H = \text{graft}(H_1, H_2)$, where H_2 has a WNUF$_k$.

Then H has a WNUF$_k$.

Cobus Swarts
WNUFs and NP-c
Four main tools in proving NP-completeness of HOM_H:

- Direct reduction from SAT or similar.
- The “indicator” construction.
- The “(vertex) sub-indicator” construction.
- The “arc sub-indicator” construction.

For digraphs H in some family, the proofs normally go by induction on $|V(H)|$ (non-existence of minimum counterexample). The direct reductions establish the base cases and the three constructions make the induction work.
Identify u and v, retract J back to T_5, and keep track of the images of j.
In general, some designated vertices of the sub-indicator J are identified with some designated vertices of H. Let H^+ be the subgraph of H induced by the images of j under retraction back to H.

Lemma (Hell and Nešetřil 1990)

Let H be a digraph that is a core. If the H^+-colouring problem is NP-complete, then the H-colouring problem is also NP-complete.

Lemma

Let H be a digraph. If H^+ does not have a WNUF$_k$ for $k > 1$, then H does not have a WNUF of arity greater than one.

The proof shows the contrapositive.

There are similar results corresponding to the indicator construction and arc sub-indicator construction.
These results give a method for translating certain NP-completeness theorems into no WNUF theorems.

- “NP-complete” \iff “no WNUF.”
- If there is a proof of NP-completeness that depends on base cases B_1, B_2, \ldots, B_t and the application of vertex (arc) sub-indicators and indicators, then there is a proof of “no WNUF” provided one can show that B_1, B_2, \ldots, B_t have no WNUF.
Theorem (Bang-Jensen, Hell and MacGillivray 1988)

Let H be a semi-complete digraph.

- If H contains at most one directed cycle, then H-colouring is polynomial time solvable.
- Otherwise H-colouring is NP-complete.

- Acyclic tournaments have an X-enumeration \Rightarrow have a WNUF.
- Unicyclic tournaments are instances of the graft extension \Rightarrow have a WNUF.
Semi-complete Digraphs With At Least Two Cycles

Base Cases:

\[T_4 \]

\[T'_4 \]

\[T_5 \]

\[T_6 \]
Theorem

Let H be a semi-complete digraph.

- If H contains at most one directed cycle, then H has a WNUF.
- Otherwise H does not admit a WNUF.
Undirected Graphs and WNUFs

Theorem (Hell and Nešetřil 1990)

Let H be a core.

- If H is bipartite, then the H-colouring problem has a polynomial time algorithm.
- Otherwise the H-colouring problem is NP-complete.

Theorem

Let H be a core.

- If $H = K_2$, then H admits a NUF$_3$.
- If H is non-bipartite, then H does not admit a WNUF.

Base case is K_3.
Theorem (MacGillivray 1991)

Let H be a vertex transitive digraph that is also a core.
- If $H = C_k$, HOM_H is polynomial.
- Otherwise, HOM_H is NP-complete.

Theorem

Let H be a vertex transitive digraph that is also a core.
- If $H = C_k$, then H admits a NUF\textsubscript{3}.
- Otherwise, H does not admit a WNUF.

Base Cases: Undirected non-bipartite graphs.
Thank you.
Questions?