1 – 31 juillet 2019 » Expansions, algèbres de Lie et invariants

Organisateurs: Anton Alekseev (Genève), Dror Bar-Natan (Toronto), Roland van der Veen (Leiden)

Notre atelier réunira des experts travaillant sur les expansions et d’autres travaillant sur les invariants, dans l’espoir que les deux groupes apprendront l’un de l’autre et s’influenceront mutuellement. Les expansions sont des solutions d’un certain type d’équations compliquées dans des espaces gradués souvent associés aux algèbres de Lie libres.

Comme exemples d’expansions, mentionnons (entre autres) les associateurs de Drinfel’d, les solutions des équations de Kashiwara-Vergne et les solutions de problèmes variés de quantification par déformation. Les invariants qui nous intéressent sont des invariants de divers objets en topologie en basses dimensions, inspirés de l’algèbre quantique. Ces invariants sont souvent associés à des algèbres de Lie semi-simples. Les deux sujets ont émergé en même temps, aux débuts de la théorie des groupes quantiques, mais ils se sont développés séparément (dans une large mesure). Nous pensons qu’il sera très profitable de reprendre leur étude conjointe.

1 – 31 août 2019 » Variétés des carquois et théorie des représentations

Organisateurs: Joel Kamnitzer (Toronto), Hugh Thomas (UQAM)

La théorie des représentations de carquois (et d’algèbres pré-projectives reliées aux carquois) a été étudiée par des chercheurs en algèbre, alors que la géométrie des variétés de carquois a été étudiée par des chercheurs en théorie géométrique des représentations.

La présente activité thématique réunira des membres de ces deux communautés pour qu’ils se fassent part de leurs progrès respectifs et pour stimuler la recherche et la collaboration. Parmi les sujets qui seront abordés, mentionnons la quantification des variétés de carquois, les constructions de branches de Coulomb utilisant les variétés de carquois, la théorie basculante pour les algèbres pré-projectives et la catégorification des algèbres amassées.

5 au 9 août : semaine thématique sur les algèbres amassées et les représentations des carquois, avec un mini-cours par Pierre-Guy Plamondon
 
12 au 16 août : atelier sur les variétés des carquois et la théorie des représentations
 
19 au 23 août: semaine thématique sur les variétés des carquois, avec des mini-cours par Michael Finkelberg et Hiraku Nakajima
 

Un financement est disponible pour les étudiants diplômés et les jeunes chercheurs. Les demandes de soutien financier doivent inclure une lettre briève expliquant votre intérêt dans le programme et le niveau de soutien demandé, ainsi qu’un cv, et doivent être envoyées à jkamnitz@math.toronto.edu .  

Les étudiants doivent aussi demander à leur directeur de recherche d’envoyer une lettre de recommandation.  Les demandes doivent être reçues par le 28 février.  Dans certains cas les demandes reçues avant le 28 février pourraient être traitées avant le 28 février.

1 – 8 septembre 2019 » Atelier sur les nouvelles tendances en systèmes différentiels polynomiaux

Organisateurs: Jaume Llibre (Barcelona), Dana Schlomiuk (Montréal)

Les champs de vecteurs polynomiaux interviennent dans de nombreux domaines des mathématiques appliquées comme par exemple en dynamique de population, en chimie, circuits électriques, réseaux de neurones, ondes de choc, physique du laser, hydrodynamique, etc. Ils ont aussi une importance théorique.

Trois problèmes sur ces systèmes, énoncés il y a plus de cent ans, sont aujourd’hui encore ouverts. Des développements théoriques dans ce domaine peuvent jeter une lumière sur ces problèmes difficiles et aussi avoir un impact sur des applications. Récemment plusieurs nouveaux résultats significatifs ont été obtenus sur les champs de vecteurs polynomiaux. Le but de cet atelier est de focaliser l’attention sur ces nouveaux développements en les faisant connaître et de permettre aux chercheurs d’avoir des échanges scientifiques afin d’avancer la recherche dans ce domaine.

Quelques points qui seront discutés:

  1. La théorie des invariants algébriques des systèmes différentiels polynomiaux.
  2. Intégrabilité des systèmes différentiels polynomiaux.
  3. Algorithmes pour le calcul effectif des propriétés algébriques et géométriques des champs de vecteurs polynomiaux.
  4. Le 16e problème de Hilbert.
  5. Calcul de solutions particulières dans des familles de champs de vecteurs polynomiaux.
  6. Perturbations singulières dans les systèmes différentiels lents-rapides dans le plan.