29 avril – 17 mai 2019 » Les différentes facettes de l’intégrabilité

Organisateurs: Jacques Hurtubise (McGill), Nicolai Reshetikhin (Berkeley), Lauren K. Williams (Berkeley)

La théorie des systèmes intégrables, ayant ses sources dans les symétries, a des liens intimes avec une panoplie de domaines des mathématiques. Parfois ces liens sont directs, mais parfois ces liens sont plus complexes, et même difficiles à rendre explicites.  Quelques-unes de ces interfaces, entre l’intégrabilité, la géométrie, la théorie des représentations et les probabilités seront les sujets dominants de cette conférence et de ses activités satellites. Les thèmes à couvrir comprennent le rôle des algèbres de ‘clusters’ et de leurs variétés associées dans la description des espaces de modules, les liens entre les systèmes intégrables et la théorie des représentations qui interviennent entre dans des domaines tels que les groupes quantiques et la quantification des espaces de modules, et les interfaces fascinantes entre la théorie des probabilités, la combinatoire et la théorie des systèmes intégrables qui interviennent dans plusieurs processus liés à des modèles de mécanique statistique.

La première semaine sera vouée à des cours préparatoires pour étudiants des cycles supérieurs, ainsi que quelques séminaires de recherche et discussions. La conférence aura lieu la deuxième semaine. Des discussions de recherche et des séminaires continueront la troisième semaine, avec des cours pour les étudiants qui feront le suivi.

1 – 31 juillet 2019 » Expansions, algèbres de Lie et invariants

Organisateurs: Anton Alekseev (Genève), Dror Bar-Natan (Toronto), Roland van der Veen (Leiden)

Notre atelier réunira des experts travaillant sur les expansions et d’autres travaillant sur les invariants, dans l’espoir que les deux groupes apprendront l’un de l’autre et s’influenceront mutuellement. Les expansions sont des solutions d’un certain type d’équations compliquées dans des espaces gradués souvent associés aux algèbres de Lie libres.

Comme exemples d’expansions, mentionnons (entre autres) les associateurs de Drinfel’d, les solutions des équations de Kashiwara-Vergne et les solutions de problèmes variés de quantification par déformation. Les invariants qui nous intéressent sont des invariants de divers objets en topologie en basses dimensions, inspirés de l’algèbre quantique. Ces invariants sont souvent associés à des algèbres de Lie semi-simples. Les deux sujets ont émergé en même temps, aux débuts de la théorie des groupes quantiques, mais ils se sont développés séparément (dans une large mesure). Nous pensons qu’il sera très profitable de reprendre leur étude conjointe.