**Organizers: Jacques Hurtubise (McGill), Nicolai Reshetikhin (Berkeley), Lauren K. Williams (Berkeley)**

The theory of integrable systems, with its origins in symmetries, has intricate ties to a wide variety of areas of mathematics. Sometimes the ties are straightforward, but in many cases, the links are more complicated, and indeed somewhat difficult to make explicit. Some of these interfaces, between integrability, geometry, representation theory, and probability theory will be dominating subjects during the conference and satellite activities. Themes to be covered include the role of cluster algebras and cluster varieties in the description of moduli spaces, the links between integrable systems and representation theory appearing in such areas as quantum groups and quantization of moduli spaces, and the fascinating interfaces of probability theory, combinatorics and integrable systems appearing in several processes linked to statistical mechanical models.

During the first week of activities, introductory lectures for graduate students will take place, as well as research seminars and discussions. The conference will take place during the second week. During the third week, research discussions and seminars will continue together with follow-up lectures for graduate students.